Stretch \& Fold

Domenico Lippolis

February 25, 2022

Chaos Course 2022

Markov partitions

- Given a map f, and a phase space \mathcal{M}, we can divide it into finitely many $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{N-1}$, and record $f^{n}(x), x \in \mathcal{M}$ maps where.

Markov partitions

- Given a $\operatorname{map} f$, and a phase space \mathcal{M}, we can divide it into finitely many $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{N-1}$, and record $f^{n}(x), x \in \mathcal{M}$ maps where.
- Difficulties can be
(1) if $\mathcal{M}_{i} \cap \mathcal{M}_{j}$ then one point can be coded by multiple sequences
(2) all points in the intersection $\bigcap_{n \in \mathbb{Z}} f^{n}\left(\mathcal{M}_{s_{n}}\right)$ are coded by the same $s=\left\{s_{n}\right\}_{n \in \mathbb{Z}}$

Katok \& Hasselblatt, ChaosBook.org

Topological Markov chains

- Let $A=\left(a_{i j}\right)_{i, j=0}^{N-1}$, and $a_{i j}=0,1$

Topological Markov chains

- Let $A=\left(a_{i j}\right)_{i, j=0}^{N-1}$, and $a_{i j}=0,1$
- Let

$$
\begin{equation*}
S_{A}=:\left\{s \in S_{N} \mid a_{S_{n} s_{n+1}}=1 \text { for } n \in \mathbb{Z}\right\} \tag{1}
\end{equation*}
$$

Topological Markov chains

- Let $A=\left(a_{i j}\right)_{i, j=0}^{N-1}$, and $a_{i j}=0,1$
- Let

$$
\begin{equation*}
S_{A}=:\left\{s \in S_{N} \mid a_{S_{n} s_{n+1}}=1 \text { for } n \in \mathbb{Z}\right\} \tag{1}
\end{equation*}
$$

- The matrix A determines all the possible transitions between the symbols $0,1, \ldots, N-1$

Topological Markov chains

- Let $A=\left(a_{i j}\right)_{i, j=0}^{N-1}$, and $a_{i j}=0,1$
- Let

$$
\begin{equation*}
S_{A}=:\left\{s \in S_{N} \mid a_{S_{n} s_{n+1}}=1 \text { for } n \in \mathbb{Z}\right\} \tag{1}
\end{equation*}
$$

- The matrix A determines all the possible transitions between the symbols $0,1, \ldots, N-1$
- The restriction

$$
\begin{equation*}
\left.\sigma_{N}\right|_{S_{A}}=: \sigma_{A} \tag{2}
\end{equation*}
$$

is called the topological Markov chain determined by A

Topological Markov chains

- Let $A=\left(a_{i j}\right)_{i, j=0}^{N-1}$, and $a_{i j}=0,1$
- Let

$$
\begin{equation*}
S_{A}=:\left\{s \in S_{N} \mid a_{S_{n} s_{n+1}}=1 \text { for } n \in \mathbb{Z}\right\} \tag{1}
\end{equation*}
$$

- The matrix A determines all the possible transitions between the symbols $0,1, \ldots, N-1$
- The restriction

$$
\begin{equation*}
\left.\sigma_{N}\right|_{S_{A}}=: \sigma_{A} \tag{2}
\end{equation*}
$$

is called the topological Markov chain determined by A

- Example:

σ_{A} moves the origin of a sequence on A by the next vertex

Markov partitions

If

- Every intersection $\bigcap_{n \in \mathbb{Z}} f^{n}\left(\mathcal{M}_{s_{n}}\right)$ contains no more than one point, one can define

$$
\begin{equation*}
h: \Lambda \subset S_{N} \longrightarrow \mathcal{M} \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
f \circ h=h \circ \sigma_{N} \tag{4}
\end{equation*}
$$

Markov partitions

If

- Every intersection $\bigcap_{n \in \mathbb{Z}} f^{n}\left(\mathcal{M}_{s_{n}}\right)$ contains no more than one point, one can define

$$
\begin{equation*}
h: \Lambda \subset S_{N} \longrightarrow \mathcal{M} \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
f \circ h=h \circ \sigma_{N} \tag{4}
\end{equation*}
$$

- that is the map f is a factor of some symbolic system

Markov partitions

If

- Every intersection $\bigcap_{n \in \mathbb{Z}} f^{n}\left(\mathcal{M}_{s_{n}}\right)$ contains no more than one point, one can define

$$
\begin{equation*}
h: \Lambda \subset S_{N} \longrightarrow \mathcal{M} \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
f \circ h=h \circ \sigma_{N} \tag{4}
\end{equation*}
$$

- that is the map f is a factor of some symbolic system
- The decomposition $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{N-1}$ that makes f semiconjugate to σ_{A} is called a Markov partition

Logistic map: partition

- Consider the quadratic map

$$
\begin{equation*}
f(x)=\lambda x(1-x) \quad \lambda>4 \tag{5}
\end{equation*}
$$

Logistic map: partition

- Consider the quadratic map

$$
\begin{equation*}
f(x)=\lambda x(1-x) \quad \lambda>4 \tag{5}
\end{equation*}
$$

- Here the collection Λ of points with bounded orbits is

$$
\Lambda=\bigcap_{n \in \mathbb{Z}} f^{-n}\left(\mathcal{M}_{s_{n}}\right)=\bigcap_{n \in \mathbb{Z}} f^{-n}([0,1])
$$

Logistic map: partition

- Then $f^{-1}([0,1])=\mathcal{M}_{0} \cup \mathcal{M}_{1}$, where

$$
\begin{equation*}
\mathcal{M}_{0}=\left[0, \frac{1}{2}-\sqrt{\frac{1}{4}-\frac{1}{\lambda}}\right], \quad \mathcal{M}_{1}=\left[\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{\lambda}}, 1\right] \tag{6}
\end{equation*}
$$

Logistic map: partition

- Then $f^{-1}([0,1])=\mathcal{M}_{0} \cup \mathcal{M}_{1}$, where

$$
\begin{equation*}
\mathcal{M}_{0}=\left[0, \frac{1}{2}-\sqrt{\frac{1}{4}-\frac{1}{\lambda}}\right], \quad \mathcal{M}_{1}=\left[\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{\lambda}}, 1\right] \tag{6}
\end{equation*}
$$

- and $f^{-2}([0,1])=\mathcal{M}_{00} \cup \mathcal{M}_{01} \cup \mathcal{M}_{11} \cup \mathcal{M}_{10}$

Logistic map: partition

- Then $f^{-1}([0,1])=\mathcal{M}_{0} \cup \mathcal{M}_{1}$, where

$$
\begin{equation*}
\mathcal{M}_{0}=\left[0, \frac{1}{2}-\sqrt{\frac{1}{4}-\frac{1}{\lambda}}\right], \quad \mathcal{M}_{1}=\left[\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{\lambda}}, 1\right] \tag{6}
\end{equation*}
$$

- and $f^{-2}([0,1])=\mathcal{M}_{00} \cup \mathcal{M}_{01} \cup \mathcal{M}_{11} \cup \mathcal{M}_{10}$
- Because $\left|f^{\prime}(x)\right|>1$, everywhere on \mathcal{M}, for every sequence s, the diameter of the intersections $\bigcap_{n \in \mathbb{Z}} f^{-n}\left(\mathcal{M}_{s_{n}}\right)$ shrinks exponentially

Logistic map: partition

- Then $\Lambda=\bigcap_{n \in \mathbb{Z}} f^{-n}([0,1])$ is a Cantor set for the sequence s, and the intersection

$$
\begin{equation*}
h(\{s\})=\bigcap_{n \in \mathbb{Z}} f^{-n}\left(\mathcal{M}_{s_{n}}\right) \tag{7}
\end{equation*}
$$

asymptotically consists of one point

Logistic map: partition

- Then $\Lambda=\bigcap_{n \in \mathbb{Z}} f^{-n}([0,1])$ is a Cantor set for the sequence s, and the intersection

$$
\begin{equation*}
h(\{s\})=\bigcap_{n \in \mathbb{Z}} f^{-n}\left(\mathcal{M}_{s_{n}}\right) \tag{7}
\end{equation*}
$$

asymptotically consists of one point

- We can furthermore show that h is a continuous bijection and thus a homeomorphism:

$$
\begin{equation*}
h: S \longrightarrow \Lambda \tag{8}
\end{equation*}
$$

and thus the symbolic dynamics is isomorphic to the dynamics

Stretch \& Fold

- But where does the chaos come from? Here's a prototype example due to Rössler

$$
\begin{aligned}
\dot{x} & =-y-z \\
\dot{y} & =x+a y \\
\dot{z} & =b+z(x-c)
\end{aligned}
$$

Rössler \& Letellier 2020

Stretch \& Fold

- Can understand the dynamics as 'paper flow' or 'cake flow'

Stretch \& Fold

- Can understand the dynamics as 'paper flow' or 'cake flow'

- A $2 D$ cross section is rotated, stretched, and folded by the dynamics

Stretch \& Fold: return map

- Model a return map $\left[x_{n+1}, y_{n+1}\right]=\left[f_{1}\left(x_{n}, y_{n}\right), f_{2}\left(x_{n}, y_{n}\right)\right]$ such that
(1) make x_{n+1} a folded function of x_{n}
(2) make y_{n+1} non-inverted w.r.t. y_{n} along the ascending part of $f_{1}\left(x_{n}, y_{n}\right)$ and inverted along its descending part

Stretch \& Fold: return map

- Model a return map $\left[x_{n+1}, y_{n+1}\right]=\left[f_{1}\left(x_{n}, y_{n}\right), f_{2}\left(x_{n}, y_{n}\right)\right]$ such that
(1) make x_{n+1} a folded function of x_{n}
(2) make y_{n+1} non-inverted w.r.t. y_{n} along the ascending part of $f_{1}\left(x_{n}, y_{n}\right)$ and inverted along its descending part
- That translates to, for example,

$$
\begin{align*}
& x_{n+1}=\lambda x_{n}\left(1-x_{n}\right)-\epsilon y_{n} \\
& y_{n+1}=\left(\delta y_{n}-\epsilon\right)\left(1-2 x_{n}\right) \tag{9}
\end{align*}
$$

Stretch \& Fold: return map

- Model a return map $\left[x_{n+1}, y_{n+1}\right]=\left[f_{1}\left(x_{n}, y_{n}\right), f_{2}\left(x_{n}, y_{n}\right)\right]$ such that
(1) make x_{n+1} a folded function of x_{n}
(2) make y_{n+1} non-inverted w.r.t. y_{n} along the ascending part of $f_{1}\left(x_{n}, y_{n}\right)$ and inverted along its descending part
- That translates to, for example,

$$
\begin{align*}
& x_{n+1}=\lambda x_{n}\left(1-x_{n}\right)-\epsilon y_{n} \\
& y_{n+1}=\left(\delta y_{n}-\epsilon\right)\left(1-2 x_{n}\right) \tag{9}
\end{align*}
$$

- example: $\lambda=3.9, \delta=0.4, \epsilon=0.02$

Special cases

(1) take $\epsilon=0$, get

$$
\begin{equation*}
x_{n+1}=\lambda x_{n}\left(1-x_{n}\right) \tag{10}
\end{equation*}
$$

$$
\text { - } \epsilon=0.02 \cdot 10^{-50}
$$

Special cases

(1) take $\epsilon=0$, get

$$
\begin{equation*}
x_{n+1}=\lambda x_{n}\left(1-x_{n}\right) \tag{10}
\end{equation*}
$$

$$
\text { - } \epsilon=0.02 \cdot 10^{-50}
$$

(2) $\delta=0$:

$$
\begin{align*}
x_{n+1} & =\lambda x_{n}\left(1-x_{n}\right)-y_{n} \\
y_{n+1} & =-\epsilon\left(1-2 x_{n}\right) \tag{11}
\end{align*}
$$

The Cremona transformation

- still for $\delta=0$, rescale the variables (for some k) as

$$
\begin{align*}
x^{\prime} & =\frac{1}{k}\left(x-\frac{1}{2}\right) \\
y^{\prime} & =-\frac{1}{k} y \tag{12}
\end{align*}
$$

The Cremona transformation

- still for $\delta=0$, rescale the variables (for some k) as

$$
\begin{align*}
x^{\prime} & =\frac{1}{k}\left(x-\frac{1}{2}\right) \\
y^{\prime} & =-\frac{1}{k} y \tag{12}
\end{align*}
$$

- and the map takes the form

$$
\begin{align*}
x_{n+1}^{\prime} & =\frac{\lambda-2}{4 k}-k x_{n}^{\prime 2}+\epsilon y_{n}^{\prime} \\
y_{n+1}^{\prime} & =-2 \epsilon x_{n}^{\prime} \tag{13}
\end{align*}
$$

The Cremona transformation

- still for $\delta=0$, rescale the variables (for some k) as

$$
\begin{align*}
x^{\prime} & =\frac{1}{k}\left(x-\frac{1}{2}\right) \\
y^{\prime} & =-\frac{1}{k} y \tag{12}
\end{align*}
$$

- and the map takes the form

$$
\begin{align*}
x_{n+1}^{\prime} & =\frac{\lambda-2}{4 k}-k x_{n}^{\prime 2}+\epsilon y_{n}^{\prime} \\
y_{n+1}^{\prime} & =-2 \epsilon x_{n}^{\prime} \tag{13}
\end{align*}
$$

- We may then choose k so as to write the previous as the Hénon map

$$
\begin{align*}
x_{n+1}^{\prime} & =1-\alpha x_{n}^{\prime 2}+y_{n}^{\prime} \\
y_{n+1}^{\prime} & =\beta x_{n}^{\prime} \tag{14}
\end{align*}
$$

The Hamiltonian Hénon map

- for $\alpha=6, \beta=-1$, determine the non-wandering set:

$$
\begin{equation*}
\Omega=\left\{x \mid x \in \lim _{m, n \rightarrow \infty} f^{m}(\mathcal{M}) \cap f^{-n}(\mathcal{M})\right\} \tag{15}
\end{equation*}
$$

The Hamiltonian Hénon map

- for $\alpha=6, \beta=-1$, determine the non-wandering set:

$$
\begin{equation*}
\Omega=\left\{x \mid x \in \lim _{m, n \rightarrow \infty} f^{m}(\mathcal{M}) \cap f^{-n}(\mathcal{M})\right\} \tag{15}
\end{equation*}
$$

- can draw successive $\Omega_{m, n}$, intersections of horseshoes

Smale's horseshoes

- Topologically, the dynamics produces a sequence of horseshoes

Smale's horseshoes

- Topologically, the dynamics produces a sequence of horseshoes

- In the figure: $\bigcap_{i=0}^{n} f^{i}(\Delta)$ is 2^{n} disjoint horizontal rectangles

Smale's horseshoes

- Topologically, the dynamics produces a sequence of horseshoes

- In the figure: $\bigcap_{i=0}^{n} f^{i}(\Delta)$ is 2^{n} disjoint horizontal rectangles
- Likewise for the vertical $\bigcap_{i=0}^{n} f^{-i}(\Delta)$, so that $\Omega=\bigcap_{i=-\infty}^{\infty} f^{i}(\Delta)$ is a Cantor set, and h is a homeomorphism:

$$
\begin{equation*}
h: S \longrightarrow \Omega, \quad h(\{s\})=\bigcap_{n \in \mathbb{Z}} f^{n}\left(\Delta_{s_{n}}\right) \tag{16}
\end{equation*}
$$

Smale's horseshoes

- Topologically, the dynamics produces a sequence of horseshoes

- In the figure: $\bigcap_{i=0}^{n} f^{i}(\Delta)$ is 2^{n} disjoint horizontal rectangles
- Likewise for the vertical $\bigcap_{i=0}^{n} f^{-i}(\Delta)$, so that $\Omega=\bigcap_{i=-\infty}^{\infty} f^{i}(\Delta)$ is a Cantor set, and h is a homeomorphism:

$$
\begin{equation*}
h: S \longrightarrow \Omega, \quad h(\{s\})=\bigcap_{n \in \mathbb{Z}} f^{n}\left(\Delta_{s_{n}}\right) \tag{16}
\end{equation*}
$$

- Corollary: periodic points of f are dense in Ω, and $f_{\Omega \Omega}$ is topologically mixing

The baker's transformation

- Definition

$$
\begin{align*}
x_{n+1} & =2 x_{n}-\theta\left(x_{n}-\frac{1}{2}\right) \\
y_{n+1} & =\frac{1}{2} y_{n}+\frac{1}{2} \theta\left(x_{n}-\frac{1}{2}\right) \tag{17}
\end{align*}
$$

The baker's transformation

- inverse transformation: swap x and y

$$
\begin{align*}
& x_{n+1}=\frac{1}{2} x_{n}+\frac{1}{2} \theta\left(y_{n}-\frac{1}{2}\right) \\
& y_{n+1}=2 y_{n}-\theta\left(y_{n}-\frac{1}{2}\right) \tag{18}
\end{align*}
$$

Rössler \& Letellier 2020

Kneading Danish pastry

- Rolling out, cutting, and stacking up, there are 2^{n} stripes

Kneading Danish pastry

- Rolling out, cutting, and stacking up, there are 2^{n} stripes

- go back and forth in time, build symbol square of rectangles $\left[s_{-m+1} \cdots s_{0} . s_{1} s_{2} \cdots s_{n}\right]$, each of size $2^{-m} \times 2^{-n}$

Rössler \& Letellier, ChaosBook.org

Pruning

- the Kneading operation comes from intersections between manifolds

Pruning

- the Kneading operation comes from intersections between manifolds

- but some intersections may miss out

Continuous Automorphism on a Torus

- Definition

$$
\begin{aligned}
x_{n+1} & =x_{n}+y_{n} \quad \bmod 1 \\
y_{n+1} & =x_{n}+2 y_{n} \bmod 1
\end{aligned}
$$

Coding the CAT

Build a partition:

- draw stable/unstable manifolds

Coding the CAT

Build a partition:

- draw stable/unstable manifolds
- map the areas from intersections back into the torus

Coding the CAT

Build a partition:

- draw stable/unstable manifolds
- map the areas from intersections back into the torus
- Rectangles are adjacent $=$ no escape

Coding the CAT

Build a partition:

- draw stable/unstable manifolds
- map the areas from intersections back into the torus
- Rectangles are adjacent $=$ no escape

- We have two rectangles $R^{(1)}, R^{(2)}$

Coding the CAT

Build a partition:

- draw stable/unstable manifolds
- map the areas from intersections back into the torus
- Rectangles are adjacent $=$ no escape

- We have two rectangles $R^{(1)}, R^{(2)}$
- To make a partition, look at $F\left(R^{(i)}\right)$

Coding the CAT

- $F\left(R^{(1)}\right)$ consists of three components, two in $R^{(1)}$ and one in $R^{(2)}$

Coding the CAT

- $F\left(R^{(1)}\right)$ consists of three components, two in $R^{(1)}$ and one in $R^{(2)}$
- $F\left(R^{(2)}\right)$ consists of two components, one in $R^{(1)}$ and one in $R^{(2)}$

Coding the CAT

- $F\left(R^{(1)}\right)$ consists of three components, two in $R^{(1)}$ and one in $R^{(2)}$
- $F\left(R^{(2)}\right)$ consists of two components, one in $R^{(1)}$ and one in $R^{(2)}$
- Totally five components: $\Delta_{0}, \Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$

Coding the CAT

- Every intersection $\bigcap_{n \in \mathbb{Z}} f^{n}\left(\Delta_{s_{n}}\right)$ contains no more than one point

Coding the CAT

- Every intersection $\bigcap_{n \in \mathbb{Z}} f^{n}\left(\Delta_{s_{n}}\right)$ contains no more than one point
- one can define

$$
\begin{equation*}
h: S_{A} \longrightarrow \mathbb{T}^{2} \tag{19}
\end{equation*}
$$

such that

$$
\begin{equation*}
f \circ h=h \circ \sigma_{A} \tag{20}
\end{equation*}
$$

- where

$$
A=\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \tag{21}\\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

