◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stretch & Fold

Domenico Lippolis

February 25, 2022

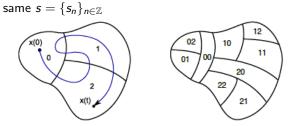
Chaos Course 2022

Markov partitions		CAT map
	Markov partitions	s
	marker partition.	

• Given a map f, and a phase space \mathcal{M} , we can divide it into finitely many $\mathcal{M}_0, \mathcal{M}_1, ..., \mathcal{M}_{N-1}$, and record $f^n(x), x \in \mathcal{M}$ maps where.

Markov partitions		
	Markov partitions	
		,

- Given a map f, and a phase space \mathcal{M} , we can divide it into finitely many $\mathcal{M}_0, \mathcal{M}_1, ..., \mathcal{M}_{N-1}$, and record $f^n(x), x \in \mathcal{M}$ maps where.
- Difficulties can be
 - if $\mathcal{M}_i \cap \mathcal{M}_j$ then one point can be coded by multiple sequences • all points in the intersection $\bigcap f^n(\mathcal{M}_{s_n})$ are coded by the
 - all points in the intersection $|| T^{n}(\mathcal{M}_{s_{n}})$ are coded by the $n \in \mathbb{Z}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Topological Markov chains

• Let
$$A = (a_{ij})_{i,j=0}^{N-1}$$
, and $a_{ij} = 0, 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Topological Markov chains

• Let
$$A = (a_{ij})_{i,j=0}^{N-1}$$
, and $a_{ij} = 0, 1$
• Let
 $S_A =: \{ s \in S_N | a_{s_n s_{n+1}} = 1 \text{ for } n \in \mathbb{Z} \}$ (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Topological Markov chains

• Let
$$A = (a_{ij})_{i,j=0}^{N-1}$$
, and $a_{ij} = 0, 1$

Let

$$S_A =: \{ s \in S_N | a_{s_n s_{n+1}} = 1 \text{ for } n \in \mathbb{Z} \}$$

$$(1)$$

• The matrix A determines all the possible transitions between the symbols 0, 1, ..., N - 1

Topological Markov chains

• Let
$$A = (a_{ij})_{i,j=0}^{N-1}$$
, and $a_{ij} = 0, 1$

Let

$$S_A =: \{ s \in S_N | a_{s_n s_{n+1}} = 1 \text{ for } n \in \mathbb{Z} \}$$

$$(1)$$

- The matrix A determines all the possible transitions between the symbols 0, 1, ..., N 1
- The restriction

$$\sigma_N|_{S_A} =: \sigma_A \tag{2}$$

is called the topological Markov chain determined by A

Topological Markov chains

• Let
$$A = (a_{ij})_{i,j=0}^{N-1}$$
, and $a_{ij} = 0, 1$

Let

$$S_A =: \{ s \in S_N | a_{s_n s_{n+1}} = 1 \text{ for } n \in \mathbb{Z} \}$$

$$(1)$$

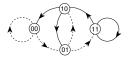
- The matrix A determines all the possible transitions between the symbols 0, 1, ..., N 1
- The restriction

$$\sigma_N|_{S_A} =: \sigma_A \tag{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is called the topological Markov chain determined by A

• Example:



 σ_A moves the origin of a sequence on A by the next vertex

Markov partitions		Smale's Horseshoe	CAT map
		N.A. 1	
		Markov partiti	ons
lf			
11			
Every interview	ersection $\bigcap f^n(\mathcal{M}_{s_n})$	contains no more than or	ne point,
-	$n\in\mathbb{Z}$		•
one can d	efine		
	$h:\Lambda\subset$	$: S_N \longrightarrow \mathcal{M}$	(3)
		- / v	(-)

such that

$$f \circ h = h \circ \sigma_N \tag{4}$$

Markov partitions	Stretch & Fold	Smale's Horseshoe	CAT map
		Markov partition	S
lf			
Evenu int	ersection $\bigcap f^n(M)$	contains no more than one r	point

• Every intersection $\bigcap_{n \in \mathbb{Z}} f^n(\mathcal{M}_{s_n})$ contains no more than one point, one can define

$$h: \Lambda \subset S_N \longrightarrow \mathcal{M} \tag{3}$$

such that

$$f \circ h = h \circ \sigma_N \tag{4}$$

• that is the map f is a factor of some symbolic system

Markov partitions		
	NALL STAT	

Markov partitions

lf

• Every intersection $\bigcap_{n \in \mathbb{Z}} f^n(\mathcal{M}_{s_n})$ contains no more than one point, one can define

$$h: \Lambda \subset S_N \longrightarrow \mathcal{M} \tag{3}$$

such that

$$f \circ h = h \circ \sigma_N \tag{4}$$

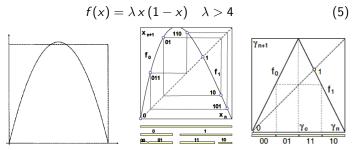
- that is the map f is a factor of some symbolic system
- The decomposition M₀, M₁, ..., M_{N-1} that makes f semiconjugate to σ_A is called a Markov partition

Markov partitions		CAT map

Logistic map: partition

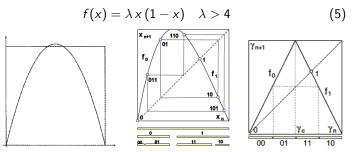
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Consider the quadratic map



Logistic map: partition

• Consider the quadratic map



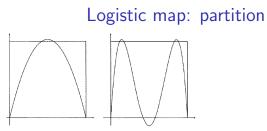
 $\bullet\,$ Here the collection Λ of points with bounded orbits is

$$\Lambda = \bigcap_{n \in \mathbb{Z}} f^{-n}(\mathcal{M}_{s_n}) = \bigcap_{n \in \mathbb{Z}} f^{-n}([0,1])$$

ChaosBook.org

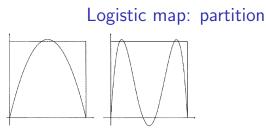
・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



• Then
$$f^{-1}\left([0,1]
ight)=\mathcal{M}_0\cup\mathcal{M}_1$$
, where

$$\mathcal{M}_0 = \left[0, \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{1}{\lambda}}\right], \quad \mathcal{M}_1 = \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{1}{\lambda}}, 1\right] \quad (6)$$



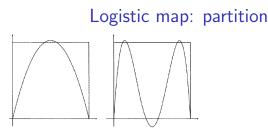
• Then $f^{-1}([0,1]) = \mathcal{M}_0 \cup \mathcal{M}_1$, where

$$\mathcal{M}_0 = \left[0, \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{1}{\lambda}}\right], \quad \mathcal{M}_1 = \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{1}{\lambda}}, 1\right] \quad (6)$$

• and $f^{-2}([0,1]) = \mathcal{M}_{00} \cup \mathcal{M}_{01} \cup \mathcal{M}_{11} \cup \mathcal{M}_{10}$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



• Then $f^{-1}([0,1]) = \mathcal{M}_0 \cup \mathcal{M}_1$, where

$$\mathcal{M}_0 = \left[0, \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{1}{\lambda}}\right], \quad \mathcal{M}_1 = \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{1}{\lambda}}, 1\right] \quad (6)$$

- and $f^{-2}([0,1]) = \mathcal{M}_{00} \cup \mathcal{M}_{01} \cup \mathcal{M}_{11} \cup \mathcal{M}_{10}$
- Because |f'(x)| > 1, everywhere on M, for every sequence s, the diameter of the intersections ∩ f⁻ⁿ(M_{sn}) shrinks exponentially

Markov partitions		CAT map

Logistic map: partition

• Then $\Lambda = \bigcap_{n \in \mathbb{Z}} f^{-n}([0,1])$ is a Cantor set for the sequence *s*, and the intersection

$$h(\{s\}) = \bigcap_{n \in \mathbb{Z}} f^{-n}(\mathcal{M}_{s_n})$$
(7)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

asymptotically consists of one point

Logistic map: partition

• Then $\Lambda = \bigcap_{n \in \mathbb{Z}} f^{-n}([0,1])$ is a Cantor set for the sequence s, and the intersection

$$h(\{s\}) = \bigcap_{n \in \mathbb{Z}} f^{-n}(\mathcal{M}_{s_n})$$
(7)

asymptotically consists of one point

• We can furthermore show that *h* is a continuous bijection and thus a homeomorphism:

$$h: S \longrightarrow \Lambda \tag{8}$$

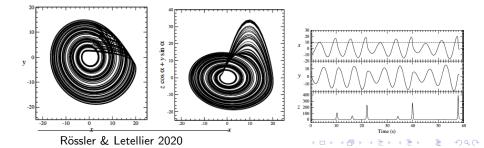
and thus the symbolic dynamics is isomorphic to the dynamics

Stretch & Fold	CAT map

Stretch & Fold

• But where does the chaos come from? Here's a prototype example due to Rössler

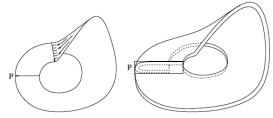
$$\dot{x} = -y - z \dot{y} = x + ay \dot{z} = b + z(x - c)$$



Stretch & Fold

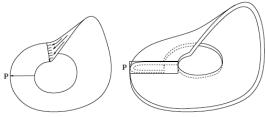
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Can understand the dynamics as 'paper flow' or 'cake flow'



Stretch & Fold

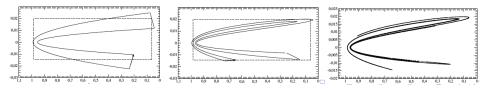
• Can understand the dynamics as 'paper flow' or 'cake flow'



• A 2D cross section is rotated, stretched, and folded by the dynamics

Stretch & Fold: return map

- Model a return map $[x_{n+1}, y_{n+1}] = [f_1(x_n, y_n), f_2(x_n, y_n)]$ such that
 - **1** make x_{n+1} a folded function of x_n
 - 2 make y_{n+1} non-inverted w.r.t. y_n along the ascending part of $f_1(x_n, y_n)$ and inverted along its descending part



Stretch & Fold: return map

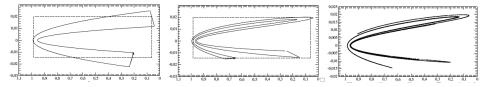
• Model a return map $[x_{n+1}, y_{n+1}] = [f_1(x_n, y_n), f_2(x_n, y_n)]$ such that

make x_{n+1} a folded function of x_n
 make y_{n+1} non-inverted w.r.t. y_n along the ascending part of f₁(x_n, y_n) and inverted along its descending part

• That translates to, for example,

$$x_{n+1} = \lambda x_n (1 - x_n) - \epsilon y_n$$

$$y_{n+1} = (\delta y_n - \epsilon) (1 - 2x_n)$$
(9)



Stretch & Fold: return map

• Model a return map $[x_{n+1}, y_{n+1}] = [f_1(x_n, y_n), f_2(x_n, y_n)]$ such that

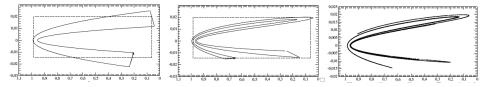
make x_{n+1} a folded function of x_n
 make y_{n+1} non-inverted w.r.t. y_n along the ascending part of f₁(x_n, y_n) and inverted along its descending part

• That translates to, for example,

$$x_{n+1} = \lambda x_n (1 - x_n) - \epsilon y_n$$

$$y_{n+1} = (\delta y_n - \epsilon) (1 - 2x_n)$$
(9)

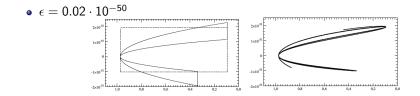
• example: $\lambda = 3.9, \delta = 0.4, \epsilon = 0.02$



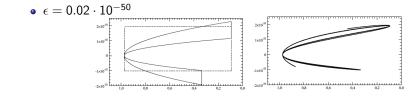
Markov partitions	Stretch & Fold		CAT map
		Special cases	5
		1	
•			
\blacksquare take $\epsilon =$	0, get		

$$x_{n+1} = \lambda x_n \left(1 - x_n \right) \tag{10}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



Markov partitions	Stretch & Fold		CAT map
		Special case	es
(1) take $\epsilon=$	-		
	$x_{n+1} = \lambda$	$x_n(1-x_n)$	(10)



 $2 \delta = 0:$

$$\begin{aligned} x_{n+1} &= \lambda \, x_n \, (1 - x_n) - y_n \\ y_{n+1} &= -\epsilon \, (1 - 2x_n) \end{aligned}$$
 (11)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Cremona transformation

• still for $\delta = 0$, rescale the variables (for some k) as

$$x' = \frac{1}{k} \left(x - \frac{1}{2} \right)$$

$$y' = -\frac{1}{k} y$$
(12)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Cremona transformation

• still for $\delta = 0$, rescale the variables (for some k) as

$$x' = \frac{1}{k} \left(x - \frac{1}{2} \right)$$

$$y' = -\frac{1}{k} y$$
(12)

• and the map takes the form

$$\begin{aligned} x'_{n+1} &= \frac{\lambda - 2}{4k} - k \, x'^2_n + \epsilon \, y'_n \\ y'_{n+1} &= -2\epsilon \, x'_n \end{aligned}$$
 (13)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Cremona transformation

• still for $\delta = 0$, rescale the variables (for some k) as

$$x' = \frac{1}{k} \left(x - \frac{1}{2} \right)$$

$$y' = -\frac{1}{k} y$$
(12)

• and the map takes the form

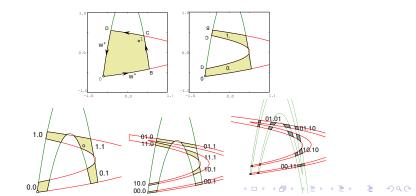
$$\begin{aligned} x'_{n+1} &= \frac{\lambda - 2}{4k} - k \, x'^2_n + \epsilon \, y'_n \\ y'_{n+1} &= -2\epsilon \, x'_n \end{aligned} \tag{13}$$

• We may then *choose k* so as to write the previous as the Hénon map

The Hamiltonian Hénon map

• for $\alpha = 6$, $\beta = -1$, determine the non-wandering set:

$$\Omega = \left\{ x | x \in \lim_{m, n \to \infty} f^m(\mathcal{M}) \cap f^{-n}(\mathcal{M}) \right\}$$
(15)

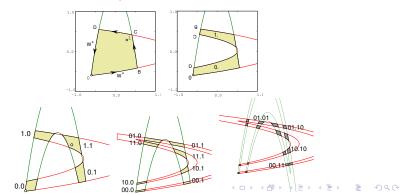


The Hamiltonian Hénon map

• for $\alpha=$ 6, $\beta=-1,$ determine the non-wandering set:

$$\Omega = \left\{ x | x \in \lim_{m, n \to \infty} f^m(\mathcal{M}) \cap f^{-n}(\mathcal{M}) \right\}$$
(15)

• can draw successive $\Omega_{m,n}$, intersections of horseshoes

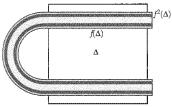


	Smale's Horseshoe	

Smale's horseshoes

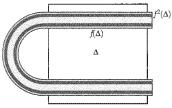
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Topologically, the dynamics produces a sequence of horseshoes



	Smale's Horseshoe	
	Smale's horseshoe	c
		3

• Topologically, the dynamics produces a sequence of horseshoes

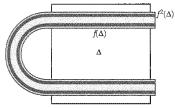


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• In the figure: $\bigcap_{i=0}^{n} f^{i}(\Delta)$ is 2^{n} disjoint horizontal rectangles

Smale's horseshoes

• Topologically, the dynamics produces a sequence of horseshoes

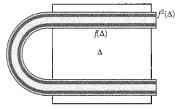


- In the figure: $\bigcap_{i=0}^{n} f^{i}(\Delta)$ is 2^{n} disjoint horizontal rectangles
- Likewise for the vertical $\bigcap_{i=0}^{n} f^{-i}(\Delta)$, so that $\Omega = \bigcap_{i=-\infty}^{\infty} f^{i}(\Delta)$ is a Cantor set, and *h* is a homeomorphism:

$$h: S \longrightarrow \Omega, \quad h(\{s\}) = \bigcap_{n \in \mathbb{Z}} f^n(\Delta_{s_n})$$
 (16)

Smale's horseshoes

• Topologically, the dynamics produces a sequence of horseshoes



- In the figure: $\bigcap_{i=0}^{n} f^{i}(\Delta)$ is 2^{n} disjoint horizontal rectangles
- Likewise for the vertical $\bigcap_{i=0}^{n} f^{-i}(\Delta)$, so that $\Omega = \bigcap_{i=-\infty}^{\infty} f^{i}(\Delta)$ is a Cantor set, and *h* is a homeomorphism:

$$h: S \longrightarrow \Omega, \quad h(\{s\}) = \bigcap_{n \in \mathbb{Z}} f^n(\Delta_{s_n})$$
 (16)

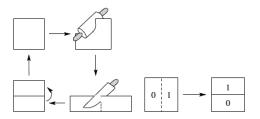
Corollary: periodic points of f are dense in Ω, and f_{|Ω} is topologically mixing

The baker's transformation

Definition

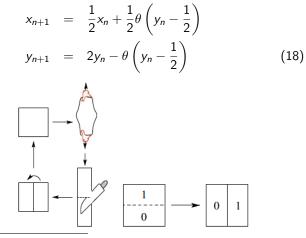
$$x_{n+1} = 2x_n - \theta \left(x_n - \frac{1}{2} \right)$$

$$y_{n+1} = \frac{1}{2}y_n + \frac{1}{2}\theta \left(x_n - \frac{1}{2} \right)$$
(17)



The baker's transformation

• inverse transformation: swap x and y



イロト 不得 トイヨト イヨト

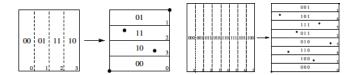
э

Rössler & Letellier 2020

Kneading Danish pastry

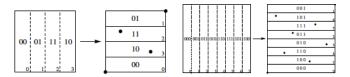
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Rolling out, cutting, and stacking up, there are 2^n stripes



Kneading Danish pastry

• Rolling out, cutting, and stacking up, there are 2ⁿ stripes



00. **ō**

.00

.01 .11 .10

Rössler & Letellier, ChaosBook.org

.1

.0

0.

σ

110

.000 .001 .011 .010 .110 .111 .101 .100

0

110

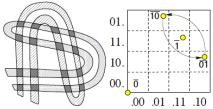
100

000. ā

Pruning

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

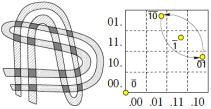
• the Kneading operation comes from intersections between manifolds



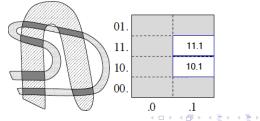
Pruning

э.

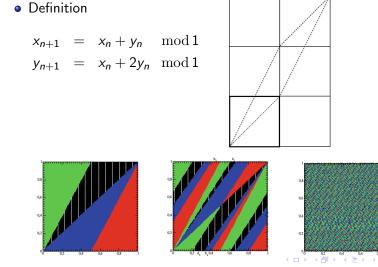
• the Kneading operation comes from intersections between manifolds



• but some intersections may miss out



Continuous Automorphism on a Torus

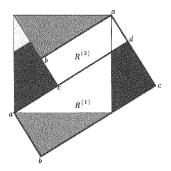


୬ବ୍ଦ

3

Build a partition:

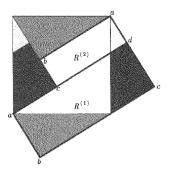
• draw stable/unstable manifolds



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Build a partition:

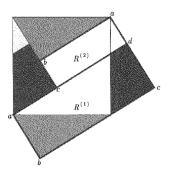
- draw stable/unstable manifolds
- map the areas from intersections back into the torus



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Build a partition:

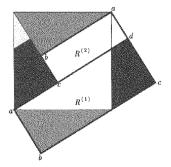
- draw stable/unstable manifolds
- map the areas from intersections back into the torus
- Rectangles are adjacent = no escape



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Build a partition:

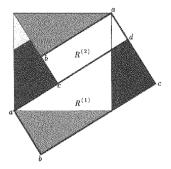
- draw stable/unstable manifolds
- map the areas from intersections back into the torus
- Rectangles are adjacent = no escape



• We have two rectangles $R^{(1)}, R^{(2)}$

Build a partition:

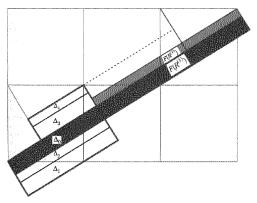
- draw stable/unstable manifolds
- map the areas from intersections back into the torus
- Rectangles are adjacent = no escape



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

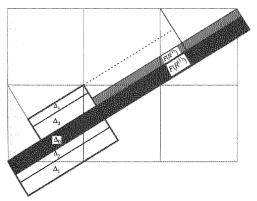
- We have two rectangles $R^{(1)}, R^{(2)}$
- To make a partition, look at $F(R^{(i)})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

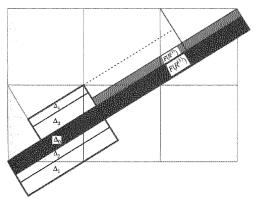


• $F(R^{(1)})$ consists of three components, two in $R^{(1)}$ and one in $R^{(2)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



F (R⁽¹⁾) consists of three components, two in R⁽¹⁾ and one in R⁽²⁾
F (R⁽²⁾) consists of two components, one in R⁽¹⁾ and one in R⁽²⁾



- $F(R^{(1)})$ consists of three components, two in $R^{(1)}$ and one in $R^{(2)}$
- $F(R^{(2)})$ consists of two components, one in $R^{(1)}$ and one in $R^{(2)}$
- Totally five components: $\Delta_0, \Delta_1, \Delta_2, \Delta_3, \Delta_4$

			CAT map	
	Coding the CAT			
		0		
Every int	ersection $\bigcap f^n(\Delta_{s_n})$ co	ontains no more than one p	oint	
	$n \in \mathbb{Z}$			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Markov partitions	Stretch & Fold	Smale's Horseshoe	CAT map	
		Coding the CA	АT	
• Every intersection $\bigcap_{n\in\mathbb{Z}}f^n(\Delta_{s_n})$ contains no more than one point				
 one can d 		$h \longrightarrow \mathbb{T}^2$	(19)	
such that	$f \circ h$	$= h \circ \sigma_A$	(20)	
• where	$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$ \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{array} \right) $	(21)	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●