a spatiotemporal theory of turbulence ChaosBook.org/chaos1

Predrag Cvitanović

last lecture of the course Georgia Tech

April 26, 2022

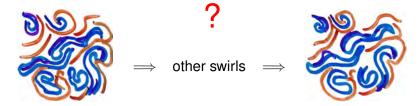
overview

what this course is about

(2) turbulence in large domains

how do clouds solve PDEs?

do clouds integrate Navier-Stokes equations?



are clouds Navier-Stokes supercomputers in the sky?

• turbulence in large domains

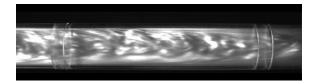
2 spacetime

goal : enumerate the building blocks of turbulence

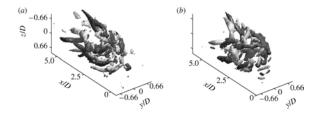
describe turbulence

starting from the equations (no statistical assumptions)

challenge : experiments are amazing

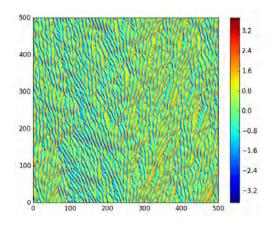


T. Mullin lab



B. Hof lab

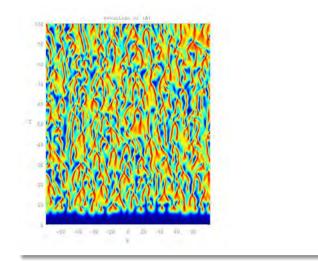
an example : Kuramoto-Sivashinsky on a large domain



[horizontal] space $x \in [0, L]$ [up] time evolution

another example of large spacetime domain turbulence

complex Ginzburg-Landau



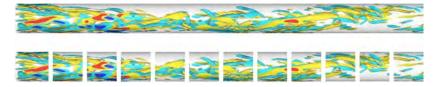
[horizontal] space $x \in [-L/2, L/2]$

[up] time evolution

codeinthehole.com/static/tutorial/coherent.html

fluid dynamics in **arge** turbulent domains

pipe flow close to onset of turbulence ¹



we have a detailed theory of small turbulent fluid cells

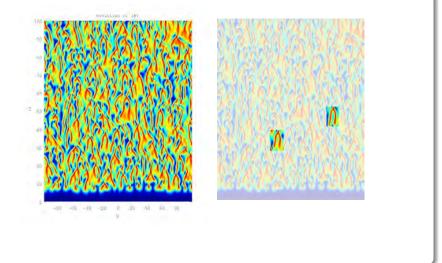
can we can we construct the infinite pipe by coupling small turbulent cells ?

what would that theory look like ?

¹M. Avila and B. Hof, Phys. Rev. E 87 (2013)

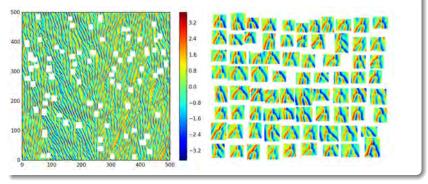
complex Ginzburg-Landau on a large spacetime domain

goal : enumerate nearly recurrent patterns



[left-right] space $x \in [-L/2, L/2]$ [up] time $t \in [0, T]$

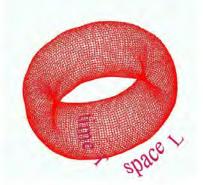
Kuramoto-Sivashinsky on a large spacetime domain



goal : define, enumerate nearly recurrent tiles

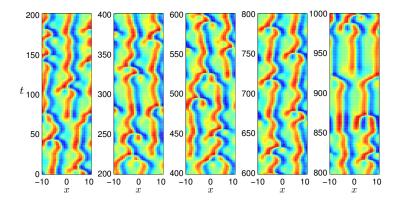
use spatiotemporally compact solutions as lego blocks

periodic spacetime : 2-torus



this 'exact coherent structure' shadows a small patch of spacetime solution u(x, t)

evolution of Kuramoto-Sivashinsky on small L = 22 cell



horizontal: $x \in [-11, 11]$ vertical: time color: magnitude of u(x, t)

periodic orbits generalize to *d*-tori

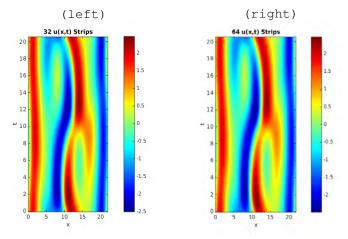
1 time, 0 space dimensions

a state space point is *periodic* if its orbit returns to it after a finite time T; such orbit tiles the time axis by infinitely many repeats

1 time, d-1 space dimensions

a state space point is *spatiotemporally periodic* if it belongs to an invariant *d*-torus \mathcal{R} ; such torus tiles the spacetime by infinitely many repeats

a spacetime invariant 2-torus integrated in either time or space



(left) old : time evolution t = [0, T]

initial condition : space periodic line x = [0, L](right) new : space evolution x = [0, L]

initial condition : time periodic line t = [0, T]Gudorf 2016

turbulence in large domains

- 2 spacetime
- spacetime computations

how do clouds solve PDEs?

clouds do not NOT integrate Navier-Stokes equations

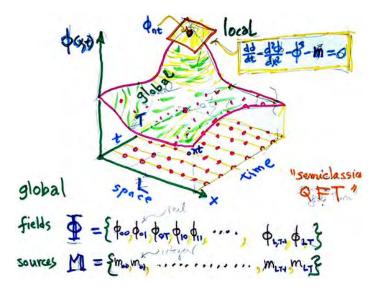
 \Rightarrow other swirls =

do clouds satisfy Navier-Stokes equations?

yes!

they satisfy them locally, everywhere and at all times

think globally, act locally



for each symbol array M, a periodic lattice state X_M

the equations are imposed as local constraints

your equation here, Feynman form:

F(u) = 0

for example, minimize over the entire 2-torus

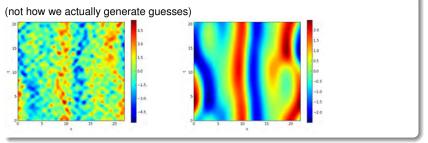
cost function

$$G \equiv \frac{1}{2} |F(u)|^2_{L \times T}$$

does it work at all ?

add strong noise to a *known* solution, twice the typical amplitude

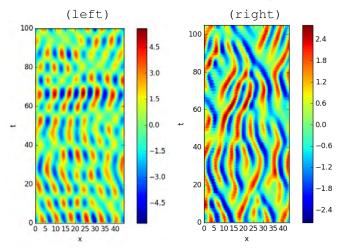
test 1



(left) initial guess: a known invariant 2-torus $(L_0, T_0) = (22.0, 20.5057459345) + strong random noise$

(right) the resulting adjoint descent converged invariant 2-torus $(L_f, T_f) = (21.95034935834641, 20.47026321555662)$

test 2 - invariant 2-torus found variationally



(left) initial : $\overline{L} = 2\pi\sqrt{2}$ spatially modulated "noisy" guess (right) adjoint descent : converged invariant 2-torus

turbulence in large domains

- 2 spacetime
- fundamental tiles

building blocks of turbulence

how do we recognize a cloud?

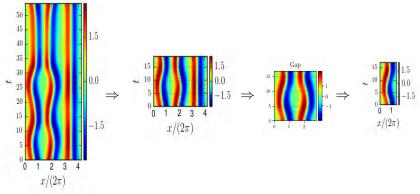
WATCH

 \implies other swirls =

by recurrent shapes!

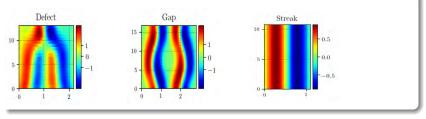
so, construct an alphabet of possible shapes

extracting a fundamental tile



- 1) invariant 2-torus
- 2) invariant 2-torus computed from initial guess cut out from 1)
- 3) "gap" invariant 2-torus, initally cut out from 2)
- 4) the "gap" prime invariant 2-torus fundamental domain

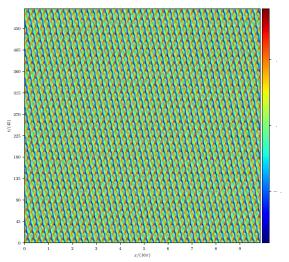
a trial set of 'prime' tiles



an alphabet of Kuramoto-Sivashinsky fundamental tiles

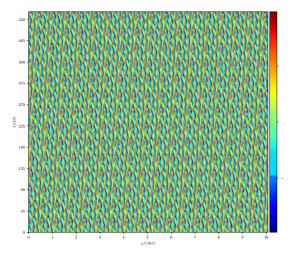
utilize also discrete symmetries : spatial reflection, spatiotemporal shift-reflect, ····

Kuramoto-Sivashinsky tiled by a small tile



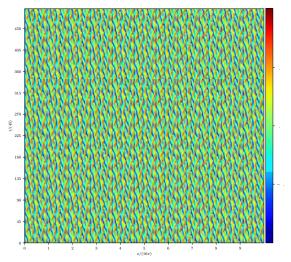
tiling by relative periodic invariant 2-torus (L, T) = (13.02, 15)

spacetime tiled by a larger tile



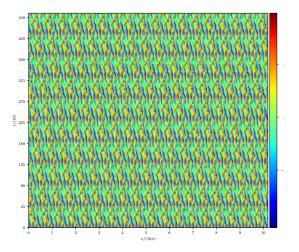
tiling by relative periodic invariant 2-torus (L, T) = (33.73, 35)

spacetime tiled by a tall tile



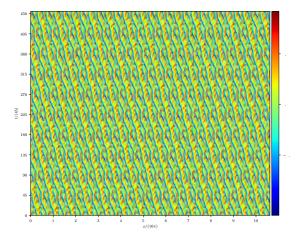
tiling by shift-reflect invariant 2-torus (L, T) = (55.83, 24)

spacetime tiled by a larger tile



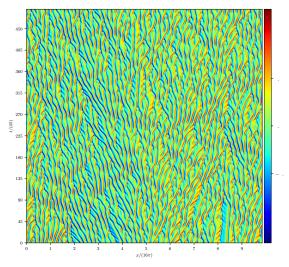
tiling by relative periodic invariant 2-torus (L, T) = (32.02, 51)

spacetime tiled by a larger tile



tiling by relative periodic invariant 2-torus (L, T) = (44.48, 50)

any single tiling looks nothing like turbulent Kuramoto-Sivashinsky !



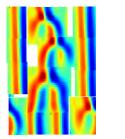
[horizontal] space $x \in [-L/2, L/2]$

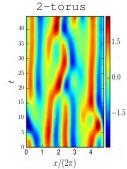
[up] time evolution

- turbulence in large domains
- 2 spacetime
- Indamental tiles
- gluing tiles

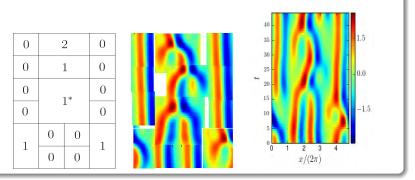
a qualitative tiling guess

a tiling and the resulting solution





enumerate hierarchically spatiotemporal patterns



2D symbolic encoding \Rightarrow admissible solutions

- each symbol indicates a minimal spatiotemporal tile
- glue them in all admissible ways

take home : clouds do not integrate PDEs

do clouds integrate Navier-Stokes equations?

NO!

 \Rightarrow other swirls

at any spacetime point Navier-Stokes equations describe the local tangent space

they satisfy them locally, everywhere and at all times

course part 1 geometry of chaos : summary

- study turbulence in infinite spatiatemporal domains
- Itheory : classify all spatiotemporal tilings
- onumerics : future is spatiotemporal

there is no more time

there is only enumeration of spacetime solutions

this solves all your problems :)

(semi-)classical field theories

Dreams of Grand Schemes : solve

Navier-Stokes

$$g \frac{\partial u_{i}}{\partial t} + g u_{j} \frac{\partial u_{i}}{\partial x_{j}} = g X_{4} - \frac{\partial p}{\partial x_{j}} + \mu \nabla^{2} u_{j}$$
Einstein

$$R_{ik} - \frac{1}{2} g_{ik} R = \frac{g \pi k}{c^{4}} T_{ik}$$

$$R_{klm}^{i} = \frac{\partial \Gamma_{km}^{i}}{\partial x^{i}} - \frac{\partial \Gamma_{kl}^{i}}{\partial x^{m}} + \Gamma_{he}^{i} \Gamma_{hm}^{h} - \Gamma_{hm}^{i} \Gamma_{ke}^{h}$$
Yang-Mills

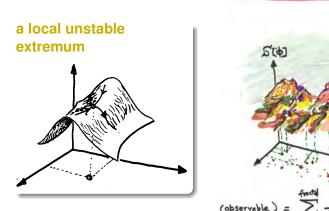
$$\chi = -\frac{1}{4} F_{\mu\nu}^{a} F_{\mu}^{a\nu}$$

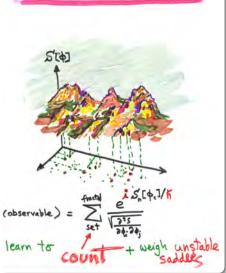
$$F_{\mu\nu}^{a} = \partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a} + g C_{abc} A_{\mu}^{b} A_{\nu}^{c}$$

QFT path integrals : semi-classical quantization

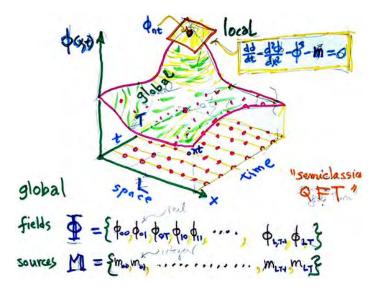
a fractal set of saddles

TURBULENT Q.F.T. 2





think globally, act locally



for each symbol array M, a periodic lattice state X_M

- turbulence in large domains
- 2 spacetime
- tilings
- theory of turbulence

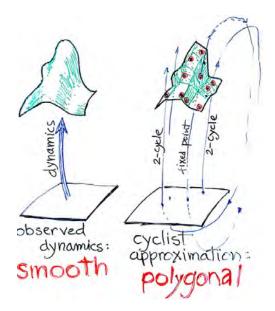
are d-tori

a theory of turbulence ?

the very short answer : POT

if you win : I teach you how

(for details, see ChaosBook.org/course1/index2.html)



tessellate the state space by

spatiotemporal periodic orbits

classical trace formula for continuous time flows

$$\sum_{\alpha=0}^{\infty} \frac{1}{s - s_{\alpha}} = \sum_{\rho} T_{\rho} \sum_{r=1}^{\infty} \frac{e^{r(\beta A_{\rho} - sT_{\rho})}}{\left|\det\left(1 - M_{\rho}^{r}\right)\right|}$$

relates the spectrum of the evolution operator

$$\mathcal{L}(\mathbf{x}',\mathbf{x}) = \delta(\mathbf{x}' - f^{t}(\mathbf{x})) \mathbf{e}^{\beta \mathbf{A}(\mathbf{x},t)}$$

to the unstable periodic orbits p of the flow $f^t(x)$.

classical trace formula for averaging over 2-tori

something like

$$\sum_{\alpha=0}^{\infty} \frac{1}{s-s_{\alpha}} = \sum_{\rho} V_{\rho} \sum_{r=1}^{\infty} \frac{e^{r(\beta A_{\rho} - sV_{\rho})}}{|\det \mathcal{J}_{\rho^r}|}$$

weighs the unstable relative prime (all symmetries quotiented) d-torus p by the inverse of its Hill determinant, the determinant (state space volume) of its orbit Jacobian matrix \mathcal{J}_p

det \mathcal{J}_p

and V_{ρ} is the volume

$$V_{\rho} = T_{\rho}L_{\rho}$$

of the prime spacetime tile p